.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "beginner/examples_tensor/polynomial_numpy.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_beginner_examples_tensor_polynomial_numpy.py: Warm-up: numpy -------------- A third order polynomial, trained to predict :math:`y=\sin(x)` from :math:`-\pi` to :math:`pi` by minimizing squared Euclidean distance. This implementation uses numpy to manually compute the forward pass, loss, and backward pass. A numpy array is a generic n-dimensional array; it does not know anything about deep learning or gradients or computational graphs, and is just a way to perform generic numeric computations. .. GENERATED FROM PYTHON SOURCE LINES 16-54 .. code-block:: default import numpy as np import math # Create random input and output data x = np.linspace(-math.pi, math.pi, 2000) y = np.sin(x) # Randomly initialize weights a = np.random.randn() b = np.random.randn() c = np.random.randn() d = np.random.randn() learning_rate = 1e-6 for t in range(2000): # Forward pass: compute predicted y # y = a + b x + c x^2 + d x^3 y_pred = a + b * x + c * x ** 2 + d * x ** 3 # Compute and print loss loss = np.square(y_pred - y).sum() if t % 100 == 99: print(t, loss) # Backprop to compute gradients of a, b, c, d with respect to loss grad_y_pred = 2.0 * (y_pred - y) grad_a = grad_y_pred.sum() grad_b = (grad_y_pred * x).sum() grad_c = (grad_y_pred * x ** 2).sum() grad_d = (grad_y_pred * x ** 3).sum() # Update weights a -= learning_rate * grad_a b -= learning_rate * grad_b c -= learning_rate * grad_c d -= learning_rate * grad_d print(f'Result: y = {a} + {b} x + {c} x^2 + {d} x^3') .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.000 seconds) .. _sphx_glr_download_beginner_examples_tensor_polynomial_numpy.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: polynomial_numpy.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: polynomial_numpy.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_